Published in

The Royal Society, Proceedings of the Royal Society B: Biological Sciences, 1845(283), p. 20161234, 2016

DOI: 10.1098/rspb.2016.1234

Links

Tools

Export citation

Search in Google Scholar

Home ranges, habitat and body mass: simple correlates of home range size in ungulates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The spatial scale of animal space use, e.g. measured as individual home range size, is a key trait with important implications for ecological and evolutionary processes as well as management and conservation of populations and ecosystems. Explaining variation in home range size has therefore received great attention in ecological research. However, few studies have examined multiple hypotheses simultaneously, which is important provided the complex interactions between life history, social system and behaviour. Here, we review previous studies on home range size in ungulates, supplementing with a meta-analysis, to assess how differences in habitat use and species characteristics affect the relationship between body mass and home range size. Habitat type was the main factor explaining interspecific differences in home range size after accounting for species body mass and group size. Species using open habitats had larger home ranges for a given body mass than species using closed habitats, whereas species in open habitats showed a much weaker allometric relationship compared with species living in closed habitats. We found no support for relationships between home range size and species diet or mating system, or any sexual differences. These patterns suggest that the spatial scale of animal movement mainly is a combined effect of body mass, group size and the landscape structure. Accordingly, landscape management must acknowledge the influence of spatial distribution of habitat types on animal behaviour to ensure natural processes affecting demography and viability of ungulate populations.