Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Cell Discovery, 1(3), 2017

DOI: 10.1038/celldisc.2017.6

Springer Nature [academic journals on nature.com], Cell Discovery, 1(3), 2017

DOI: 10.1038/celldisc.2017.14

Links

Tools

Export citation

Search in Google Scholar

Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractType I interferon (IFN) serves as the first line of defense against invading pathogens. Inhibition of IFN-triggered signaling cascade by Zika virus (ZIKV) plays a critical role for ZIKV to evade antiviral responses from host cells. Here we demonstrate that ZIKV nonstructural proteins NS1, NS4B and NS2B3 inhibit the induction of IFN and downstream IFN-stimulated genes through diverse strategies. NS1 and NS4B of ZIKV inhibit IFNβ signaling at TANK-binding kinase 1 level, whereas NS2B-NS3 of ZIKV impairs JAK–STAT signaling pathway by degrading Jak1 and reduces virus-induced apoptotic cell death. Furthermore, co-operation of NS1, NS4B and NS2B3 further enhances viral infection by blocking IFN-induced autophagic degradation of NS2B3. Hence, our study reveals a novel antagonistic system employing multiple ZIKV nonstructural proteins in restricting the innate antiviral responses.