Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/srep42798

Links

Tools

Export citation

Search in Google Scholar

Hepatocyte-secreted extracellular vesicles modify blood metabolome and endothelial function by an arginase-dependent mechanism

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHepatocytes release extracellular vesicles (EVs) loaded with signaling molecules and enzymes into the bloodstream. Although the importance of EVs in the intercellular communication is already recognized, the metabolic impact of the enzymes carried by these vesicles is still unclear. We evaluated the global effect of the enzymatic activities of EVs by performing untargeted metabolomic profiling of serum samples after their exposure to EVs. This approach revealed a significant change in the abundance of 94 serum metabolic signals. Our study shows that these vesicles modify the concentration of metabolites of different chemical nature including metabolites related to arginine metabolism, which regulates vascular function. To assess the functional relevance of this finding, we examined the levels of arginase-1 protein and its activity in the hepatic EVs carrying the exosomal markers CD81 and CD63. Remarkably, the arginase activity was also detected in EVs isolated from the serum in vivo, and this vesicular activity significantly increased under liver-damaging conditions. Finally, we demonstrated that EVs secreted by hepatocytes inhibited the acetylcholine-induced relaxation in isolated pulmonary arteries, via an arginase-dependent mechanism. In summary, our study demonstrates that the hepatocyte-released EVs are metabolically active, affecting a number of serum metabolites involved in oxidative stress metabolism and the endothelial function.