Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep35922

Links

Tools

Export citation

Search in Google Scholar

General hyperconcentration of photonic polarization-time-bin hyperentanglement assisted by nitrogen-vacancy centers coupled to resonators

Journal article published in 2016 by Fang Du, Fu-Guo Deng ORCID, Gui-Lu Long ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractEntanglement concentration protocol (ECP) is used to extract the maximally entangled states from less entangled pure states. Here we present a general hyperconcentration protocol for two-photon systems in partially hyperentangled Bell states that decay with the interrelation between the time-bin and the polarization degrees of freedom (DOFs), resorting to an input-output process with respect to diamond nitrogen-vacancy centers coupled to resonators. We show that the resource can be utilized sufficiently and the success probability is largely improved by iteration of the hyper-ECP process. Besides, our hyper-ECP can be directly extended to concentrate nonlocal partially hyperentangled N-photon Greenberger-Horne-Zeilinger states, and the success probability remains unchanged with the growth of the number of photons. Moreover, the time-bin entanglement is a useful DOF and it only requires one path for transmission, which means it not only economizes on a large amount of quantum resources but also relaxes from the path-length dispersion in long-distance quantum communication.