Published in

Frontiers Media, Frontiers in Plant Science, (8)

DOI: 10.3389/fpls.2017.00821

Links

Tools

Export citation

Search in Google Scholar

Tube-Wise Diagnostic Microarray for the Multiplex Characterization of the Complex Plant Pathogen Ralstonia solanacearum

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Ralstonia solanacearum is a well-known agricultural and ecological threat worldwide. The complexity of the R. solanacearum species complex (Rssc) represents a challenge for the accurate characterization of epidemiological strains by official services and research laboratories. The majority of protocols only focus on a narrow range of strains; however, this species complex includes strains that represent major constraints and are under strict regulation. The main drawback associated with the current methods of detecting and characterizing Rssc strains is their reliance on combining different protocols to properly characterize the strains at the ecotype level, which require time and money. Therefore, we used microarray technology (ArrayTube) to develop a standard protocol, which characterizes 17 major groups of interest in the Rssc, in a single multiplex reaction. These 17 majors groups are linked with a phylogenetic assignation (phylotypes, sequevars), but also with an ecotype assignation associated with a range of hosts (e.g., brown rot, Moko). Probes were designed with a 50-mer length constraint and thoroughly evaluated for any flaws or secondary structures. The strains are characterized based on a DNA extraction from pure culture. Validation data showed strong intra-repeatability, inter-repeatability, and reproducibility as well as good specificity. A hierarchical analysis of the probe groups is suitable for an accurate characterization. Compared with single marker detection tests, the method described in this paper addresses efficiently the issue of combining several tests by testing a large number of phylogenetic markers in a single reaction assay. This custom microarray (RsscAT) represents a significant improvement in the epidemiological monitoring of Rssc strains worldwide, and it has the potential to provide insights for phylogenetic incongruence of Rssc strains based on the host of isolation and may be used to indicate potentially emergent strains. (Résumé d'auteur)