Dissemin is shutting down on January 1st, 2025

Published in

Genetics Society of America, G3, 4(7), p. 1109-1116, 2017

DOI: 10.1534/g3.116.038604

Links

Tools

Export citation

Search in Google Scholar

Resistance to Multiple Soil-Borne Pathogens of the Pacific Northwest, USA Is Colocated in a Wheat Recombinant Inbred Line Population

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Abstract Soil-borne pathogens of the Pacific Northwest decrease yields in both spring and winter wheat. Pathogens of economic importance include Fusarium culmorum, Pratylenchus neglectus, P. thornei, and Rhizoctonia solani AG8. Few options are available to growers to manage these pathogens and reduce yield loss, therefore the focus for breeding programs is on developing resistant wheat cultivars. A recombinant inbred line population, LouAu (MP-7, NSL 511036), was developed to identify quantitative trait loci (QTL) associated with resistance to P. neglectus and P. thornei. This same population was later suspected to be resistant to F. culmorum and R. solani AG8. This study confirms partial resistance to F. culmorum and R. solani AG8 is present in this population. Six major and 16 speculative QTL were identified across seven measured traits. Four of the six major QTL were found within the same genomic region of the 5A wheat chromosome suggesting shared gene(s) contribute to the resistance. These QTL will be useful in breeding programs looking to incorporate resistance to soil-borne pathogens in wheat cultivars.