Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Nuclear Fusion, 5(56), p. 056013, 2016

DOI: 10.1088/0029-5515/56/5/056013

Links

Tools

Export citation

Search in Google Scholar

Study on the L–H transition power threshold with RF heating and lithium-wall coating on EAST

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency (RF) heating and lithium-wall coating is investigated experimentally on EAST for two sets of walls: an all carbon wall (C) and molybdenum chamber and a carbon divertor (Mo/C). For both sets of walls, a minimum power threshold P thr of ~0.6 MW was found when the EAST operates in a double null (DN) divertor configuration with intensive lithium-wall coating. When operating in upper single null (USN) or lower single null (LSN), the power threshold depends on the ion ∇B drift direction. The low density dependence of the L–H power threshold, namely an increase below a minimum density, was identified in the Mo/C wall for the first time. For the C wall only the single-step L–H transition with limited injection power is observed whereas also the so-called dithering L–H transition is observed in the Mo/C wall. The dithering behaves distinctively in a USN, DN and LSN configuration, suggesting the divertor pumping capability is an important ingredient in this transition since the internal cryopump is located underneath the lower divertor. Depending on the chosen divertor configuration, the power across the separatrix P loss increases with neutral density near the lower X-point in EAST with the Mo/C wall, consistent with previous results in the C wall (Xu et al 2011 Nucl. Fusion 51 072001). These findings suggest that the edge neutral density, the ion ∇B drift as well as the divertor pumping capability play important roles in the L–H power threshold and transition behaviour.