Published in

European Geosciences Union, Hydrology and Earth System Sciences, 5(21), p. 2579-2594, 2017

DOI: 10.5194/hess-21-2579-2017

European Geosciences Union, Hydrology and Earth System Sciences Discussions, p. 1-21

DOI: 10.5194/hess-2016-388

Links

Tools

Export citation

Search in Google Scholar

Hydrology of inland tropical lowlands: the Kapuas and Mahakam wetlands

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Wetlands are important reservoirs of water, carbon and biodiversity. They are typical landscapes of lowland regions that have high potential for water retention. However, the hydrology of these wetlands in tropical regions is often studied in isolation from the processes taking place at the catchment scale. Our main objective is to study the hydrological dynamics of one of the largest tropical rainforest regions on an island using a combination of satellite remote sensing and novel observations from dedicated field campaigns. This contribution offers a comprehensive analysis of the hydrological dynamics of two neighbouring poorly gauged tropical basins; the Kapuas basin (98 700 km2) in West Kalimantan and the Mahakam basin (77 100 km2) in East Kalimantan, Indonesia. Both basins are characterised by vast areas of inland lowlands. Hereby, we put specific emphasis on key hydrological variables and indicators such as discharge and flood extent. The hydroclimatological data described herein were obtained during fieldwork campaigns carried out in the Kapuas over the period 2013–2015 and in the Mahakam over the period 2008–2010. Additionally, we used the Tropical Rainfall Measuring Mission (TRMM) rainfall estimates over the period 1998–2015 to analyse the distribution of rainfall and the influence of El-Niño – Southern Oscillation. Flood occurrence maps were obtained from the analysis of the Phase Array type L-band Synthetic Aperture Radar (PALSAR) images from 2007 to 2010. Drought events were derived from time series of simulated groundwater recharge using time series of TRMM rainfall estimates, potential evapotranspiration estimates and the threshold level approach. The Kapuas and the Mahakam lake regions are vast reservoirs of water of about 1000 and 1500 km2 that can store as much as 3 and 6.5 billion m3 of water, respectively. These storage capacity values can be doubled considering the area of flooding under vegetation cover. Discharge time series show that backwater effects are highly influential in the wetland regions, which can be partly explained by inundation dynamics shown by flood occurrence maps obtained from PALSAR images. In contrast to their nature as wetlands, both lowland areas have frequent periods with low soil moisture conditions and low groundwater recharge. The Mahakam wetland area regularly exhibits low groundwater recharge, which may lead to prolonged drought events that can last up to 13 months. It appears that the Mahakam lowland is more vulnerable to hydrological drought, leading to more frequent fire occurrences than in the Kapuas basin.