Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep31158

Links

Tools

Export citation

Search in Google Scholar

Aβ Induces Excitotoxicity Mediated by APC/C-Cdh1 Depletion That Can Be Prevented by Glutaminase Inhibition Promoting Neuronal Survival

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is activated by the fizzy-related protein homolog/CDC20-like protein 1 (cdh1) in post-mitotic neurons. Growing evidence suggests that dysregulation of APC/C-Cdh1 is involved in neurodegenerative diseases. Here we show in neurons that oligomers of amyloid beta (Aβ), a peptide related to Alzheimer’s disease, cause proteasome-dependent degradation of cdh1. This leads to a subsequent increase in glutaminase (a degradation target of APC/C-Cdh1), which causes an elevation of glutamate levels and further intraneuronal Ca2+ dysregulation, resulting in neuronal apoptosis. Glutaminase inhibition prevents glutamate excitotoxicity and apoptosis in Aβ treated neurons. Furthermore, glutamate also decreases cdh1 and leads to accumulation of glutaminase, suggesting that there may be a positive feedback loop of cdh1 inactivation. We confirmed the main findings in vivo using microinjection of either Aβ or glutamate in the CA1 region of the rat hippocampus. We show here for the first time in vivo that both Aβ and glutamate cause nuclear exclusion of cdh1 and an increase in glutaminase. These results show that maintaining normal APC/C-Cdh1 activity may be a useful target in Alzheimer’s disease treatment.