Published in

American Association for Cancer Research, Clinical Cancer Research, 14(19), p. 3764-3775, 2013

DOI: 10.1158/1078-0432.ccr-12-3725

Links

Tools

Export citation

Search in Google Scholar

S100B Promotes Glioma Growth through Chemoattraction of Myeloid-Derived Macrophages

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: S100B is member of a multigenic family of Ca2+-binding proteins, which is overexpressed by gliomas. Recently, we showed that low concentrations of S100B attenuated microglia activation through the induction of Stat3. We hypothesized that overexpression of S100B in gliomas could promote tumor growth by modulating the activity of tumor-associated macrophages (TAM). Experimental Design: We stably transfected GL261 glioma cell lines with constructs that overexpressed (S100Bhigh) or underexpressed (S100Blow) S100B and compared their growth characteristics to intracranial wild-type (S100Bwt) tumors. Results: Downregulation of S100B in gliomas had no impact on cell division in vitro but abrogated tumor growth in vivo. Interestingly, compared to S100Blow tumors, S100Bwt and S100Bhigh intracranial gliomas exhibited higher infiltration of TAMs, stronger inflammatory cytokine expression, and increased vascularity. To identify the potential mechanisms involved, the expression of the S100B receptor, receptor for advanced glycation end products (RAGE), was evaluated in gliomas. Although S100B expression induced RAGE in vivo, RAGE ablation in mice did not significantly inhibit TAM infiltration into gliomas, suggesting that other pathways were involved in this process. To evaluate other mechanisms responsible for TAM chemoattraction, we then examined chemokine pathways and found that C-C motif ligand 2 (CCL2) was upregulated in S100Bhigh tumors. Furthermore, analysis of The Cancer Genome Atlas's glioma data bank showed a positive correlation between S100B and CCL2 expression in human proneural and neural glioma subtypes, supporting our finding. Conclusions: These observations suggest that S100B promotes glioma growth by TAM chemoattraction through upregulation of CCL2 and introduces the potential utility of S100B inhibitors for glioma therapy. Clin Cancer Res; 19(14); 3764–75. ©2013 AACR.