Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Neuropsychopharmacology, 8(36), p. 1608-1619, 2011

DOI: 10.1038/npp.2011.42

Links

Tools

Export citation

Search in Google Scholar

Neurocognitive Function in Dopamine-β-Hydroxylase Deficiency

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dopamine-β-hydroxylase (DβH) deficiency is a rare genetic syndrome characterized by the complete absence of norepinephrine in the peripheral and the central nervous system. DβH-deficient patients suffer from several physical symptoms, which can be treated successfully with L-threo-3,4-dihydroxyphenylserine, a synthetic precursor of norepinephrine. Informal clinical observations suggest that DβH-deficient patients do not have obvious cognitive impairments, even when they are not medicated, which is remarkable given the important role of norepinephrine in normal neurocognitive function. This study provided the first systematic investigation of neurocognitive function in human DβH deficiency. We tested 5 DβH-deficient patients and 10 matched healthy control participants on a comprehensive cognitive task battery, and examined their pupil dynamics, brain structure, and the P3 component of the electroencephalogram. All participants were tested twice; the patients were tested once ON and once OFF medication. Magnetic resonance imaging scans of the brain revealed that the patients had a smaller total brain volume than the control group, which is in line with the recent hypothesis that norepinephrine has a neurotrophic effect. In addition, the patients showed an abnormally small or absent task-evoked pupil dilation. However, we found no substantial differences in cognitive performance or P3 amplitude between the patients and the control participants, with the exception of a temporal-attention deficit in the patients OFF medication. The largely spared neurocognitive function in DβH-deficient patients suggests that other neuromodulators have taken over the function of norepinephrine in the brains of these patients.