American Association for Cancer Research, Cancer Research, 11(70), p. 4666-4675, 2010
DOI: 10.1158/0008-5472.can-09-3970
The Endocrine Society's 92nd Annual Meeting, June 19–22, 2010 - San Diego, p. OR20-4-OR20-4
DOI: 10.1210/endo-meetings.2010.part3.or1.or20-4
Full text: Download
Abstract MicroRNAs (miRNAs) act at the posttranscriptional level to control gene expression in virtually every biological process, including oncogenesis. Here, we report the identification of a set of miRNAs that are differentially regulated in childhood adrenocortical tumors (ACT), including miR-99a and miR-100. Functional analysis of these miRNAs in ACT cell lines showed that they coordinately regulate expression of the insulin-like growth factor–mammalian target of rapamycin (mTOR)–raptor signaling pathway through binding sites in their 3′-untranslated regions. In these cells, the active Ser2448-phosphorylated form of mTOR is present only in mitotic cells in association with the mitotic spindle and midbody in the G2-M phases of the cell cycle. Pharmacologic inhibition of mTOR signaling by everolimus greatly reduces tumor cell growth in vitro and in vivo. Our results reveal a novel mechanism of regulation of mTOR signaling by miRNAs, and they lay the groundwork for clinical evaluation of drugs inhibiting the mTOR pathway for treatment of adrenocortical cancer. Cancer Res; 70(11); 4666–75. ©2010 AACR.