Published in

De Gruyter Open, Archives of Metallurgy and Materials, 1(62), p. 27-32, 2017

DOI: 10.1515/amm-2017-0004

Links

Tools

Export citation

Search in Google Scholar

Carbon Nanomaterials Application as a Counter Electrode for Dye-Sensitized Solar Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe paper presents the results of the structure investigation of a counter electrode in dye-sensitized solar cells using the carbon nanomaterials. Solar cells were fabricated on the glass with transparent conductive oxide TCO (10Ω/sq). Nanocrystalline titania based photoanode was prepared by spreading TiO2paste onto TCO glass and subsequently annealed at 450°C for at least 30 min to convert anatase phase and make an interparticle network. After then the nanostructured titania films was immersed into an ethanolic solution of the ruthenium-based dye. As a counter electrodes of dye-sensitized solar cells composite films of carbon nanomaterials and polystyrene sulfonate doped poly (3,4-ethylenedioxythiophene) PEDOT-PSS (Sigma-Aldrich) were deposited onto TCO substrates. Because carbon nanoelements and titanium oxide consist of nano-metric structural units to determine the properties of the cells and their parameters several surface sensitive techniques and methods, i.e. Raman spectroscopy, Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM), and electric properties of conductive layers were used.