Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-06643-9

Links

Tools

Export citation

Search in Google Scholar

Targeting phosphorylation of STAT3 delays tumor growth in HPV-negative anal squamous cell carcinoma mouse model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAlthough conventional chemoradiotherapy is effective for most anal squamous cell carcinoma (ASCC) patients, HPV-negative ASCC patients respond poorly to this treatment and new therapeutic approach is required. Our group has previously established an HPV-negative ASCC mouse model and demonstrated that signal transducer and activation of transcription 3 (STAT3) is hyper-activated in the model. Here, we show that in vivo inhibition of STAT3 by S3I-201 effectively delays tumor growth in ASCC mouse model indicated by significantly smaller tumor size and burden in the treatment group compared with control group at the same point. Further analysis shows that survivin and Ki67, important biomarkers for tumor cell survival and proliferation, are significantly reduced after S3I-201 treatment. Additionally, flow cytometry and immunohistofluorescent assays reveal decreased Myeloid-derived suppressor cell (MDSC) and tumor-associated macrophage (TAM) populations in the S3I-201 treatment group, which indicates a reversion of the immunosuppressive environment, unraveling the potential role for S3I-201 in immunosuppression in ASCC. Together these results for the first time demonstrated the anti-tumor effects of STAT3 inhibitor S3I-201 in HPV-negative ASCC mouse model and its multiple effects on cancer cells and immune system. Thus we conclude that S3I-201 may be a novel therapeutic approach for HPV-negative ASCC patients.