Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep35386

Links

Tools

Export citation

Search in Google Scholar

Identification of Comamonas testosteroni as an androgen degrader in sewage

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNumerous studies have reported the masculinization of freshwater wildlife exposed to androgens in polluted rivers. Microbial degradation is a crucial mechanism for eliminating steroid hormones from contaminated ecosystems. The aerobic degradation of testosterone was observed in various bacterial isolates. However, the ecophysiological relevance of androgen-degrading microorganisms in the environment is unclear. Here, we investigated the biochemical mechanisms and corresponding microorganisms of androgen degradation in aerobic sewage. Sewage samples collected from the Dihua Sewage Treatment Plant (Taipei, Taiwan) were aerobically incubated with testosterone (1 mM). Androgen metabolite analysis revealed that bacteria adopt the 9, 10-seco pathway to degrade testosterone. A metagenomic analysis indicated the apparent enrichment of Comamonas spp. (mainly C. testosteroni) and Pseudomonas spp. in sewage incubated with testosterone. We used the degenerate primers derived from the meta-cleavage dioxygenase gene (tesB) of various proteobacteria to track this essential catabolic gene in the sewage. The amplified sequences showed the highest similarity (87–96%) to tesB of C. testosteroni. Using quantitative PCR, we detected a remarkable increase of the 16S rRNA and catabolic genes of C. testosteroni in the testosterone-treated sewage. Together, our data suggest that C. testosteroni, the model microorganism for aerobic testosterone degradation, plays a role in androgen biodegradation in aerobic sewage.