Published in

Nature Research, npj 2D Materials and Applications, 1(1), 2017

DOI: 10.1038/s41699-017-0030-6

Links

Tools

Export citation

Search in Google Scholar

Moiré-related in-gap states in a twisted MoS2/graphite heterojunction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThis report presents a series of low-temperature (4.5 K) scanning tunneling microscopy and spectroscopy experimental results on monolayer MoS2 deposited on highly oriented pyrolytic graphite using chemical vapor deposition. To reveal the detailed connection between atomic morphology and conductivity in twisted MoS2/graphite heterojunctions, we employ high-sensitivity tunneling spectroscopy measurements by choosing a reduced tip-sample distance. We discern previously unobserved conductance peaks within the band gap range of MoS2, and by comparing the tunneling spectra from MoS2 grains of varying rotation with respect to the substrate, show that these features have small but non-negligible dependence on the moiré superstructure. Furthermore, within a single moiré supercell, atomically resolved tunneling spectroscopy measurements show that the spectra between the moiré high and low areas are also distinct. These in-gap states are shown to have an energy shift attributed to their local lattice strain, matching corresponding behavior of the conduction band edge, and we therefore infer that these features are intrinsic to the density of states, rather than experimental artifacts, and attribute them to the twisted stacking and local strain energy of the MoS2/graphite heterointerface.