Published in

American Chemical Society, ACS Medicinal Chemistry Letters, 10(4), p. 891-894, 2013

DOI: 10.1021/ml400320s

Links

Tools

Export citation

Search in Google Scholar

WalK, the Path towards New Antibacterials with Low Potential for Resistance Development

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Resistance to antibiotics used in the treatment of bacterial infectious diseases is a global health problem. More than a decade ago, two-component systems such as WalKR were proposed as ideal targets for the development of new antibiotics. Biochemical screens for WalKR inhibitors using compound libraries have identified many hits, some of which were shown to have non-specific effects. The recently published structures of the S. mutans and B. subtilis WalK provide the opportunity to study inhibitors of WalK autophosphorylation at the atomic level and means to design compounds with improved specificity and affinity using a structure-based approach.