Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-06166-3

Links

Tools

Export citation

Search in Google Scholar

Untangling the model muddle: Empirical tumour growth in Tasmanian devil facial tumour disease

Journal article published in 2017 by Rodrigo K. Hamede ORCID, Nicholas J. Beeton, Scott Carver ORCID, Menna E. Jones ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA pressing and unresolved topic in cancer research is how tumours grow in the absence of treatment. Despite advances in cancer biology, therapeutic and diagnostic technologies, there is limited knowledge regarding the fundamental growth and developmental patterns in solid tumours. In this ten year study, we estimated growth curves in Tasmanian devil facial tumours, a clonal transmissible cancer, in males and females with two different karyotypes (diploid, tetraploid) and facial locations (mucosal, dermal), using established differential equation models and model selection. Logistic growth was the most parsimonious model for diploid, tetraploid and mucosal tumours, with less model certainty for dermal tumours. Estimates of daily proportional tumour growth rate per day (95% Bayesian CIs) varied with ploidy and location [diploid 0.016 (0.014–0.020), tetraploid 0.026 (0.020–0.033), mucosal 0.013 (0.011–0.015), dermal 0.020 (0.016–0.024)]. Final tumour size (cm3) also varied, particularly the upper credible interval owing to host mortality as tumours approached maximum volume [diploid 364 (136–2,475), tetraploid 172 (100–305), dermal 226 (134–471)]. To our knowledge, these are the first empirical estimates of tumour growth in the absence of treatment in a wild population. Through this animal-cancer system our findings may enhance understanding of how tumour properties interact with growth dynamics in other types of cancer.