Links

Tools

Export citation

Search in Google Scholar

Heterogeneous kinetics of the dissolution of an inorganic salt, potassium carbonate, in an organic solvent, dimethylformamide.

Journal article published in 2005 by Cl Forryan, Ov Klymenko ORCID, Cm Brennan, Rg Compton
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Understanding the mechanisms of solid-liquid systems is fundamental to the development and operation of processes for the production of agrochemicals and pharmaceuticals. The use of a strong inorganic base in an organic solvent, typically, potassium carbonate in dimethylformamide, is often used to facilitate the formation of a required anionic organic nucleophile. In this paper, the dissolution kinetics of potassium carbonate in dimethylformamide at elevated temperatures is studied in the presence of ultrasound, as revealed via monitoring of the deprotonation of 2-cyanophenol by dissolved K2CO3. Two independent experimental methods were employed; the loss of 2-cyanophenol was detected electrochemically at a platinum microdisk working electrode, and the formation of the 2-cyanophenolate anion was monitored via UV/visible spectroscopic analysis. The results were modeled by fitting the experimental data to a theoretical model for the surface-controlled dissolution of solid particles. The dissolution rate constant, k, for the dissolution of K2CO3 in DMF was found to have a value of (1.3 +/- 0.2) x 10(-7) mol cm(-2) s(-1) at 100 degrees C, and the activation energy for the dissolution was 44.2 +/- 0.4 kJ mol(-1) over the temperature range of 70-100 degrees C studied.