Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Earth Interactions, 19(20), p. 1-21, 2016

DOI: 10.1175/ei-d-15-0046.1

Links

Tools

Export citation

Search in Google Scholar

Sedimentological and Paleoclimate Modeling Evidence for Preservation of Jurassic Annual Cycles in Sedimentation, Western Gondwana

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The Lajas Formation in the Neuquén Basin, Argentina, consists of a succession of mainly deltaic deposits. In the Middle Jurassic (170 million years ago), the basin was in western Gondwana roughly at the same paleolatitude as its present location (32°–40°S). Decimeter-scale, interbedded, coarser-grained and finer-grained beds in channelized and nonchannelized deltaic deposits have been interpreted as a product of variability in river discharge. The coarser-grained sandstone beds have erosional bases and contain mudstone clasts; internal cross bedding is commonly directed paleoseawards. These beds are interpreted as deposition during river-flood conditions. In contrast, the finer-grained beds are composed of interlaminated sandstone and mudstone, deposited during interflood periods. Bidirectional ripples and millimeter-scale sand–mud laminae suggest the influence of tides. This sedimentological evidence raises the question of whether these cycles represent annual variability in fluvial input. To answer this question, a simulation using the Fast Ocean Atmosphere Model for the Middle Jurassic was run to equilibrium. The model shows that the paleoclimate of the Neuquén Basin was characterized by a strong seasonal cycle, with a wet winter and a dry summer. Model runs suggest that February mean temperatures were 28°C with 4-mm precipitation (±4 mm standard deviation) per month, whereas August mean temperatures were 8°C with 34-mm precipitation (±17 mm standard deviation) per month. The strong seasonal cycles in the simulation, representing 24% of the variance in the precipitation time series, suggest that the sedimentological cycles represent annual variations. The simulation also suggests a Middle Jurassic climate where increased seasonality of precipitation occurred farther poleward than previously thought.