Published in

Nature Research, Nature, 6961(425), p. 941-944, 2003

DOI: 10.1038/nature02015

Links

Tools

Export citation

Search in Google Scholar

Demonstration of conditional gate operation using superconducting charge qubits

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Since the first demonstration of coherent control of a quantum state of a superconducting charge qubit a variety of Josephson-junction-based qubits have been implemented with remarkable progress in coherence time and read-out schemes. Although the current level of this solid-state device is still not as advanced as that of the most advanced microscopic-system-based qubits, these developments, together with the potential scalability, have renewed its position as a strong candidate as a building block for the quantum computer. Recently, coherent oscillation and microwave spectroscopy in capacitively-coupled superconducting qubits have been reported. The next challenging step toward quantum computation is a realization of logic gates. Here we demonstrate a conditional gate operation using a pair of coupled superconducting charge qubits. Using a pulse technique, we prepare different input states and show that they can be transformed by controlled-NOT (C-NOT) gate operation in the amplitude of the states. Although the phase evolution during the gate operation is still to be clarified, the present results are a major step toward the realization of a universal solid-state quantum gate.