Published in

Wiley, Advanced Materials, p. 1704210

DOI: 10.1002/adma.201704210

Links

Tools

Export citation

Search in Google Scholar

An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractRealization of ideal molecular sieves, in which the larger gas molecules are completely blocked without sacrificing high adsorption capacities of the preferred smaller gas molecules, can significantly reduce energy costs for gas separation and purification and thus facilitate a possible technological transformation from the traditional energy‐intensive cryogenic distillation to the energy‐efficient, adsorbent‐based separation and purification in the future. Although extensive research endeavors are pursued to target ideal molecular sieves among diverse porous materials, over the past several decades, ideal molecular sieves for the separation and purification of light hydrocarbons are rarely realized. Herein, an ideal porous material, SIFSIX‐14‐Cu‐i (also termed as UTSA‐200), is reported with ultrafine tuning of pore size (3.4 Å) to effectively block ethylene (C2H4) molecules but to take up a record‐high amount of acetylene (C2H2, 58 cm3 cm−3 under 0.01 bar and 298 K). The material therefore sets up new benchmarks for both the adsorption capacity and selectivity, and thus provides a record purification capacity for the removal of trace C2H2 from C2H4 with 1.18 mmol g−1 C2H2 uptake capacity from a 1/99 C2H2/C2H4 mixture to produce 99.9999% pure C2H4 (much higher than the acceptable purity of 99.996% for polymer‐grade C2H4), as demonstrated by experimental breakthrough curves.