Published in

American Institute of Physics, Journal of Vacuum Science and Technology B, 6(35), p. 06G803

DOI: 10.1116/1.4991619

Links

Tools

Export citation

Search in Google Scholar

Thermal nanoimprint to improve the morphology of MAPbX3 (MA = methylammonium, X = I or Br)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Perovskites have high potential for future electronic devices, in particular, in the field of opto-electronics. However, the electronic and optic properties of these materials highly depend on the morphology and thus on the preparation; in particular, highly crystalline layers with large crystals and without pinholes are required. Here, nanoimprint is used to improve the morphology of such layers in a thermal imprint step. Two types of material are investigated, MAPbI3 and MAPbBr3, with MA being methylammonium, CH3NH3+. The perovskite layers are prepared from solution, and the crystal size of the domains is substantially increased by imprinting them at temperatures of 100–150 °C. Although imprint is performed under atmospheric conditions which, in general, enhances the degradation, the stamp that covers the layer under elevated temperature is able to protect the perovskite largely from decomposition. Comparing imprinting experiments with pure annealing at a similar temperature and time proves this. Furthermore, imprint is capable of patterning the surface of the perovskite layers; lines and spaces of 150 nm width were reproducibly obtained under imprint at 150 °C. Moreover, a through-layer patterning is possible by using the partial cavity filling approach. Although not yet optimized, this simple way to define isolated perovskite patterns within a layer simply by thermal nanoimprint is of impact for the preparation of devices, as patterning of perovskite layers by conventional techniques is limited.