Published in

Oxford Medicine Online

DOI: 10.1093/med/9780190228484.003.0002

Links

Tools

Export citation

Search in Google Scholar

Cellular Substrates of Brain Rhythms

Book published in 2017 by Florin Amzica, Fernando H. Lopes da Silva
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
White circle
Published version: policy unclear
Data provided by SHERPA/RoMEO

Abstract

The purpose of this chapter is to familiarize the reader with the basic electrical patterns of the electroencephalogram (EEG). Brain cells (mainly neurons and glia) are organized in multiple levels of intricate networks. The cellular membranes are semipermeable media between extracellular and intracellular solutions, populated by ions and other electrically charged molecules. This represents the basis of electrical currents flowing across cellular membranes, further generating electromagnetic fields that radiate to the scalp electrodes, which record changes in the activity of brain cells. This chapter presents these concepts together with the mechanisms of building up the EEG signal. The chapter discusses the various behavioral conditions and neurophysiological mechanisms that modulate the activity of cells leading to the most common EEG patterns, such as the cellular interactions for alpha, beta, gamma, slow, delta, and theta oscillations, DC shifts, and some particular waveforms such as sleep spindles and K-complexes and nu-complexes.