Published in

Volume 1: Development and Characterization of Multifunctional Materials; Mechanics and Behavior of Active Materials; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies

DOI: 10.1115/smasis2017-3878

Links

Tools

Export citation

Search in Google Scholar

A Microfluidic Assembly and Simultaneous Interrogation of Networks of Asymmetric Biomimetic Membranes

Proceedings article published in 2017 by Mary-Anne Nguyen, Graham Taylor, Stephen A. Sarles ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, we utilize a novel microfluidic device to perform simultaneous electrical interrogation of an array of droplet interface bilayers (DIB) that feature asymmetric phospholipid leaflet compositions. While asymmetry is vital to many cellular functions, it is has received very little attention in membrane-based engineered material systems for sensing, energy conversion, or actuation. This gap is due to challenges in constructing and interrogating networks of asymmetric membranes, limiting our understanding of how lipid asymmetry affects membrane active peptides, and vice versa. Our system overcomes these difficulties by enabling asymmetric membrane formation between many pairs of lipid-coated droplets in oil. We demonstrate its use in probing the interactions between alamethicin, a membrane-active peptide that forms voltage-induced ion channels, and asymmetric DPhPC:DOPhPC membranes, a choice that creates an intrinsic intramembrane potential of |137 mV| due to differences in their respective dipole potentials. Our experiments show that adding alamethicin peptides to one side of the membrane causes this inherent membrane potential to decrease over time, and it alters the value of external voltage that must be applied to drive alamethicin insertion for ion channel formation. These effects take place over the course of 1 to 5 hours after membrane formation, and both results are consistent with translocation and mixing of lipids across the leaflets of the membrane.