Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Quaternary Science, 2(24), p. 189-197, 2009

DOI: 10.1002/jqs.1197

Links

Tools

Export citation

Search in Google Scholar

Radiocarbon dating of charcoal from tropical sequences: Results from the Niah Great Cave, Sarawak, and their broader implications

Journal article published in 2008 by Tfg Higham, Cb Ramsey, Huw Barton, Graeme Barker, Fiona Brock ORCID, Csm Turney ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Subsamples of charcoal from a number of different excavation contexts at the early modern human (Homo sapiens) site of Niah Great Cave (Malaysia) were accelerator mass spectrometry (AMS) 14C dated. Samples were prepared using one of a number of different methods: untreated (control); acid–base–acid (ABA); and acid–base–wet oxidation with stepped combustion (ABOX-SC) after Bird et al. (1999). The results show that for material younger than ∼25 ka BP there is little difference between the two chemical pretreatment methods and the control. For charcoal beyond ∼25 ka BP, however, there are differences of up to 4000 a, with ABOX-SC ages being consistently older. This is argued to be a more effective pretreatment method for decontaminating charcoal samples prior to radiocarbon dating. For radiocarbon dating charcoals greater than ∼25 ka BP, the ABOX-SC pretreatment and combustion approach appears to be the most rigorous method for developing a robust chronological framework for tropical sequences and should be more widely applied in contexts where the material being dated is likely to be ancient. The new chronology developed for Niah Cave based on this technique suggests that the earliest human evidence dates back to at least 45 ka BP and may extend significantly earlier than this based on the recent discovery of lithics 50 cm below the earliest dated charcoal. Copyright © 2008 John Wiley & Sons, Ltd.