Published in

De Gruyter, Pure and Applied Chemistry, 12(89), p. 1751-1760, 2017

DOI: 10.1515/pac-2017-0206

Links

Tools

Export citation

Search in Google Scholar

Superhydrophobic and superoleophobic poly(3,4-ethylenedioxypyrrole) polymers synthesized using the Staudinger-Vilarrasa reaction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Vegetal and animal reigns offer many examples of surfaces with surprising and interesting wetting properties. As example, springtails present superoleophobic properties allowing to live in soil and Lotus leaves show self-cleaning ability even under rainfalls. Indeed, it is known that self-cleaning properties can help to remove dust and particles during rainfalls and as a consequence to clean the surface. The bioinspiration of these surface properties is of a real interest for industrial applications in the nanotechnology field such as photovoltaic systems or anti corrosive material. Here, we use a strategy based on electropolymerization to obtain these properties. The Staudinger-Vilarrasa reaction is used to prepare innovative 3,4-ethylenedioxypyrrole (EDOP) monomers with fluorinated chains. Using C6F13 or C8F17 chains, the polymer surfaces formed after electrodeposition show superhydrophobic and superoleophobic features. Here we study the surface wettability depending on the surface energy (based on the perfluorinated chain length), the surface roughness and morphology.