Published in

American Society of Mechanical Engineers, Journal of Fluids Engineering, 4(139), p. 044501

DOI: 10.1115/1.4035114

Links

Tools

Export citation

Search in Google Scholar

Turbulent Flows Over a Backward Facing Step Simulated Using a Modified Partially Averaged Navier–Stokes Model

Journal article published in 2017 by Renfang Huang, Xianwu Luo, Bin Ji ORCID, Qingfeng Ji
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A modified partially averaged Navier–Stokes model (MPANS) is proposed by treating the standard k–ε model as the parent model and formulating the unresolved-to-total kinetic energy ratio fk as a function of the local grid size and turbulence length scale. Flows over a backward facing step are used to evaluate the performance of MPANS mode. Computations of the standard k–ε model, the constant fk partially averaged Navier–Stokes (PANS) models (fk = 0.6, 0.7), and the two-stage PANS model are carried out for comparisons. Based on the detailed analyses of calculated results and experimental data, the MPANS model performs better to predict the reattachment length together with the corner vortex and provides overall improved statistics of skin frictions, pressures, velocity profiles, and Reynolds stresses, demonstrating its promising applications in industrial turbomachines that often encounter with flow separations.