Published in

American Society for Horticultural Science, HortScience, 2(44), p. 306-311, 2009

DOI: 10.21273/hortsci.44.2.306

Links

Tools

Export citation

Search in Google Scholar

The influence of drip irrigation or subirrigation on zucchini squash grown in closed-loop substrate culture with high and low nutrient solution concentrations

Journal article published in 2009 by Youssef Rouphael, Giuseppe Colla ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Zucchini plants (Cucurbita pepo L. cultivar Afrodite) were grown during a summer–fall season in closed-soilless systems using a mixture peat–pumice to evaluate the effects of irrigation system (drip irrigation and subirrigation) and nutrient solution concentration (half = 1 dS·m−1 and full = 2 dS·m−1) in terms of substrate electrical conductivity (ECs) using the dilution 1:1.5 media:water method, growth, yield, leaf mineral composition, fruit quality, and mineral solution composition. At the end of the cultural cycle, the highest ECs at the upper (0 to 7.5 cm) and lower (7.5 to 15.0 cm) layers were recorded with subirrigation using a full nutrient solution concentration. The highest plant growth, yield, and leaf macroelements concentration (nitrogen, phosphorus, and potassium) were recorded in both irrigation systems using a full-strength solution, followed by drip irrigation, and finally by subirrigation treatment using a half-strength nutrient solution. Fruit yield, fruit mineral composition (phosphorus, potassium, calcium, and magnesium), and leaf macroelements concentration (nitrogen, phosphorus, potassium, and magnesium) were substantially reduced when the concentrations of macronutrients in the feed solution were lowered to 50% of control. Using half-nutrient solution concentration, the marketable yield reduction was more pronounced with subirrigation (58%) than with drip irrigation (42%). The variation of the macronutrient and EC in the solution during the growing cycle was less pronounced in the subirrigation than with the drip irrigation system, which represents an important aspect for the simplification of the closed-loop management of the nutrient solution.