Published in

SAGE Publications, Natural Product Communications, 1(8), p. 1934578X1300800, 2013

DOI: 10.1177/1934578x1300800124

Links

Tools

Export citation

Search in Google Scholar

Inhibition of in vitro leukotriene B4 biosynthesis in human neutrophil granulocytes and docking studies of natural quinones.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Quinones are compounds frequently contained in medicinal plants used for the treatment of inflammatory diseases. Therefore, the impact of plant-derived quinones on the arachidonic acid metabolic pathway is worthy of investigation. In this study, twenty-three quinone compounds of plant origin were tested in vitro for their potential to inhibit leukotriene B4 (LTB4) biosynthesis in activated human neutrophil granulocytes with 5-lipoxygenase (5-LOX) activity. The benzoquinones primin (3) and thymohydroquinone (4) (IC50 = 4.0 and 4.1 μM, respectively) showed activity comparable with the reference inhibitor zileuton (IC50 = 4.1 μM). Moderate activity was observed for the benzoquinone thymoquinone (2) (IC50 = 18.2 μM) and the naphthoquinone shikonin (1) (IC50 = 24.3 μM). The anthraquinone emodin and the naphthoquinone plumbagin (5) displayed only weak activities (IC50 > 50 μM). The binding modes of the active compounds were further evaluated in silico by molecular docking to the human 5-LOX crystal structure. This process supports the biological data and suggested that, although the redox potential is responsible for the quinone's activity on multiple targets, in the case of 5-LOX the molecular structure plays a vital role in the inhibition. The obtained results suggest primin as a promising compound for the development of dual COX-2/5-LOX inhibitors.