Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/srep44041

Links

Tools

Export citation

Search in Google Scholar

The redox environment triggers conformational changes and aggregation of hIAPP in Type II Diabetes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractType II diabetes (T2D) is characterized by diminished insulin production and resistance of cells to insulin. Among others, endoplasmic reticulum (ER) stress is a principal factor contributing to T2D and induces a shift towards a more reducing cellular environment. At the same time, peripheral insulin resistance triggers the over-production of regulatory hormones such as insulin and human islet amyloid polypeptide (hIAPP). We show that the differential aggregation of reduced and oxidized hIAPP assists to maintain the redox equilibrium by restoring redox equivalents. Aggregation thus induces redox balancing which can assist initially to counteract ER stress. Failure of the protein degradation machinery might finally result in β-cell disruption and cell death. We further present a structural characterization of hIAPP in solution, demonstrating that the N-terminus of the oxidized peptide has a high propensity to form an α-helical structure which is lacking in the reduced state of hIAPP. In healthy cells, this residual structure prevents the conversion into amyloidogenic aggregates.