Published in

American Meteorological Society, Journal of Applied Meteorology and Climatology, 3(55), p. 507-529, 2016

DOI: 10.1175/jamc-d-15-0060.1

Links

Tools

Export citation

Search in Google Scholar

Diurnal Course of Carbon Dioxide Mixing Ratios in the Urban Boundary Layer in Response to Surface Emissions

Journal article published in 2016 by B. Crawford, A. Christen ORCID, I. McKendry
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractObservations of carbon dioxide (CO2) mixing ratios in the urban boundary layer (UBL) are rare, even though there is potential for such measurements to be used to monitor city-scale net CO2 emissions. This work presents a unique dataset of CO2 mixing ratios observed in the UBL above Vancouver, British Columbia, Canada, by means of a tethered balloon system over a continuous 24-h summertime period. Vertical profiles of CO2 mixing ratios are found to vary according to UBL thermal structure and mechanical dynamics (development of convective and nocturnal boundary layers, vertical mixing from mechanical turbulence, horizontal advection from land–sea thermal breezes, and vertical entrainment). A box model is applied to quantify net city-scale surface emissions to the UBL volume using the measured rate of change of UBL CO2 mixing ratios and estimated CO2 advection and entrainment fluxes. The diurnal course of city-scale net emissions predicted by the model is similar to simultaneous local-scale eddy-covariance CO2 flux measurements, although there are relatively large uncertainties in hourly model calculations of horizontal advection and vertical entrainment fluxes due to inputs of regional background CO2 mixing ratios. Daily city-scale emissions totals predicted by the model (20.2 gC m−2 day−1) are 35% larger than those measured simultaneously on an urban local-scale eddy-covariance flux tower and are within 32% of a spatially scaled municipal greenhouse gas inventory. However, these methods are not expected to agree exactly because they represent different spatial source areas and include different CO2 source and sink processes.