Published in

Karger Publishers, Ophthalmic Research, 2(57), p. 77-86, 2016

DOI: 10.1159/000448480

Links

Tools

Export citation

Search in Google Scholar

Modeling Human Glaucoma: Lessons from the in vitro Models

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Glaucoma, a leading cause of blindness worldwide, is a degenerative disease characterized by retinal ganglion cell (RGC) loss and optic nerve atrophy. Elevated intraocular pressure (IOP) is a main risk factor for onset and progression of the disease. Since increased IOP is the only modifiable risk factor, relevant models for glaucoma would comprise RGC and optic nerve damage triggered by ocular hypertension. Animal models of glaucoma have greatly contributed to the understanding of the molecular mechanisms of this pathology, and they have also facilitated the development of new pharmacological interventions. Although animal models of glaucoma have provided valuable information about the disease, there is still no ideal model for studying glaucoma due to its complexity. There is a recognized demand for in vitro models that can replace or reduce the need for animal experiments. Several in vitro models have emerged as a great opportunity in the field of glaucoma research, helping to clarify the mechanisms involved in disease progression. Several types of equipment have been developed to expose cells and tissue cultures to elevated pressures. Herein, we discuss the methodology used to increase pressure, the main findings, and the relevance of in vitro models for the study of the pathophysiology of glaucoma.