Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep37597

Links

Tools

Export citation

Search in Google Scholar

Detecting and utilizing minority phases in heterogeneous catalysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHighly active phases in carbon monoxide oxidation are known, however they are transient in nature. Here, we determined for the first time the structure of such a highly active phase on platinum nanoparticles in an actual reactor. Unlike generally assumed, the surface of this phase is virtually free of adsorbates and co-exists with carbon-monoxide covered and surface oxidized platinum. Understanding the relation between gas composition and catalyst structure at all times and locations within a reactor enabled the rational design of a reactor concept, which maximizes the amount of the highly active phase and minimizes the amount of platinum needed.