Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms13548

Links

Tools

Export citation

Search in Google Scholar

Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIncreased somatic mitochondrial DNA (mtDNA) mutagenesis causes premature aging in mice, and mtDNA damage accumulates in the human brain with aging and neurodegenerative disorders such as Parkinson disease (PD). Here, we study the complete spectrum of mtDNA changes, including deletions, copy-number variation and point mutations, in single neurons from the dopaminergic substantia nigra and other brain areas of individuals with Parkinson disease and neurologically healthy controls. We show that in dopaminergic substantia nigra neurons of healthy individuals, mtDNA copy number increases with age, maintaining the pool of wild-type mtDNA population in spite of accumulating deletions. This upregulation fails to occur in individuals with Parkinson disease, however, resulting in depletion of the wild-type mtDNA population. By contrast, neuronal mtDNA point mutational load is not increased in Parkinson disease. Our findings suggest that dysregulation of mtDNA homeostasis is a key process in the pathogenesis of neuronal loss in Parkinson disease.