Published in

The Company of Biologists, Journal of Cell Science, 2017

DOI: 10.1242/jcs.201889

Links

Tools

Export citation

Search in Google Scholar

SNAP-25 gene family members differentially support secretory vesicle fusion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Neuronal dense-core vesicles (DCVs) transport and secrete neuropeptides necessary for development, plasticity and survival, but little is known about their fusion mechanism. We show that Snap-25 null mutant (SNAP-25 KO) neurons, previously shown to degenerate after 4 days in vitro (DIV), contain fewer DCVs and have reduced DCV fusion probability in surviving neurons at DIV14. At DIV3, before degeneration, SNAP-25 KO neurons show normal DCV fusion, but one day later fusion is significantly reduced. To test if other SNAP homologs support DCV fusion, we expressed SNAP-23, -29 or -47 in SNAP-25 KO neurons. SNAP-23 and -29 rescued viability and supported DCV fusion in SNAP-25 KO neurons, but SNAP-23 more efficiently. SNAP-23 also rescued synaptic vesicle (SV) fusion while SNAP-29 did not. SNAP-47 failed to rescue viability and did not support DCV or SV fusion. These data demonstrate a developmental switch, in hippocampal neurons between DIV3-4, where DCV fusion becomes SNAP-25 dependent. Furthermore, SNAP-25 homologs support DCV and SV fusion and neuronal viability to a variable extent, SNAP-23 most effectively, SNAP-29 less so and SNAP-47 ineffective.