Published in

International Union of Crystallography, Journal of Applied Crystallography, 3(49), p. 902-908, 2016

DOI: 10.1107/s1600576716005574

Links

Tools

Export citation

Search in Google Scholar

Retrieving the spatially resolved preferred orientation of embedded anisotropic particles by small-angle X-ray scattering tomography

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Experimental nondestructive methods for probing the spatially varying arrangement and orientation of ultrastructures in hierarchical materials are in high demand. While conventional computed tomography (CT) is the method of choice for nondestructively imaging the interior of objects in three dimensions, it retrieves only scalar density fields. In addition to the traditional absorption contrast, other contrast mechanisms for image formation based on scattering and refraction are increasingly used in combination with CT methods, improving both the spatial resolution and the ability to distinguish materials of similar density. Being able to obtain vectorial information, like local growth directions and crystallite orientations, in addition to scalar density fields, is a longstanding scientific desire. In this work, it is demonstrated that, under certain conditions, the spatially varying preferred orientation of anisotropic particles embedded in a homogeneous matrix can be retrieved using CT with small-angle X-ray scattering as the contrast mechanism. Specifically, orientation maps of filler talc particles in injection-moulded isotactic polypropylene are obtained nondestructively under the key assumptions that the preferred orientation varies slowly in space and that the orientation of the flake-shaped talc particles is confined to a plane. It is expected that the method will find application inin situstudies of the mechanical deformation of composites and other materials with hierarchical structures over a range of length scales.