Published in

American Institute of Physics, The Journal of Chemical Physics, 18(146), p. 184704

DOI: 10.1063/1.4982936

Links

Tools

Export citation

Search in Google Scholar

Thermally induced anchoring of a zinc-carboxyphenylporphyrin on rutile TiO2 (110)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Functionalization of surfaces has become of high interest for a wealth of applications such as sensors, hybrid photovoltaics, catalysis, and molecular electronics. Thereby molecule-surface interactions are of crucial importance for the understanding of interface properties. An especially relevant point is the anchoring of molecules to surfaces. In this work, we analyze this process for a zinc-porphyrin equipped with carboxylic acid anchoring groups on rutile TiO2 (110) using scanning probe microscopy. After evaporation, the porphyrins are not covalently bound to the surface. Upon annealing, the carboxylic acid anchors undergo deprotonation and bind to surface titanium atoms. The formation of covalent bonds is evident from the changed stability of the molecule on the surface as well as the adsorption configuration. Annealed porphyrins are rotated by 45° and adopt another adsorption site. The influence of binding on electronic coupling with the surface is investigated using photoelectron spectroscopy. The observed shifts of Zn 2p and N 1s levels to higher binding energies indicate charging of the porphyrin core, which is accompanied by a deformation of the macrocycle due to a strong interaction with the surface.