Dissemin is shutting down on January 1st, 2025

Published in

Future Medicine, Nanomedicine, 9(11), p. 1031-1040, 2016

DOI: 10.2217/nnm.16.21

Links

Tools

Export citation

Search in Google Scholar

Influence of porosity and pore shape on structural, mechanical and biological properties of polyϵ-caprolactone electro-spun fibrous scaffolds

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Electro-spun scaffolds are utilized in a diverse spectrum of clinical targets, with an ever-increasing quantity of work progressing to clinical studies and commercialization. The limited number of conformations in which the scaffolds can be fabricated hampers their wide acceptance in clinical practice. Materials & methods: Herein, we assessed a single-strep fabrication process for predesigned electro-spun scaffold preparation and the ramifications of the introduction of porosity (0, 30, 50, 70%) and pore shape (circle, rhomboid, square) on structural, mechanical (tensile and ball burst) and biological (dermal fibroblast and THP-1) properties. Results: The collector design did not affect the fibrous nature of the scaffold. Modulation of the porosity and pore shape offered control over the mechanical properties of the scaffolds. Neither the porosity nor the pore shape affected cellular (dermal fibroblast and THP-1) response. Conclusion: Overall, herein we provide evidence that electro-spun scaffolds of controlled architecture can be fabricated with fibrous fidelity, adequate mechanical properties and acceptable cytocompatibility for a diverse range of clinical targets.