Published in

Future Medicine, Nanomedicine, 6(12), p. 581-596, 2017

DOI: 10.2217/nnm-2016-0344

Links

Tools

Export citation

Search in Google Scholar

A semiautomated microfluidic platform for real-time investigation of nanoparticles’ cellular uptake and cancer cells’ tracking

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: Develop a platform composed of labeled dendrimer nanoparticles (NPs) and a microfluidic device for real-time monitoring of cancer cells fate. Materials & methods: Carboxymethylchitosan/poly(amidoamine) dendrimer NPs were labeled with fluorescein-5(6)-isothiocyanate and characterized using different physicochemical techniques. After, HeLa, HCT-116 and U87MG were cultured in the presence of NPs, and cell viability and internalization efficiency in static (standard culture) and dynamic (microfluidic culture) conditions were investigated. Results: Cancer cells cultured with NPs in dynamic conditions were viable and presented higher internalization levels as compared with static 2D cultures. Conclusion: This work demonstrated that the proposed microfluidic-based platform allows real-time monitoring, which upon more studies, namely, the assessment of an anticancer drug release effect could be used for cancer theranostics.