Published in

EMBO Press, The EMBO Journal, 15(23), p. 3051-3060, 2004

DOI: 10.1038/sj.emboj.7600302

Links

Tools

Export citation

Search in Google Scholar

Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL

Journal article published in 2004 by Nicole Clarke, Ana M. Jimenez-Lara, Emilie Voltz, Hinrich Gronemeyer ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Retinoids and interferons are signaling molecules with pronounced anticancer activity. We show that in both acute promyelocytic leukemia and breast cancer cells the retinoic acid (RA) and interferon signaling pathways converge on the promoter of the tumoricidal death ligand TRAIL. Promoter mapping, chromatin immunoprecipitation and RNA interference reveal that retinoid-induced interferon regulatory factor-1 (IRF-1), a tumor suppressor, is critically required for TRAIL induction by both RA and IFNgamma. Exposure of breast cancer cells to both antitumor agents results in enhanced TRAIL promoter occupancy by IRF-1 and coactivator recruitment, leading to strong histone acetylation and synergistic induction of TRAIL expression. In coculture experiments, pre-exposure of breast cancer cells to RA and IFNgamma induced a dramatic TRAIL-dependent apoptosis in heterologous cancer cells in a paracrine mode of action, while normal cells were not affected. Our results identify a novel TRAIL-mediated tumor suppressor activity of IRF-1 and suggest a mechanistic basis for the synergistic antitumor activities of certain retinoids and interferons. These data argue for combination therapies that activate the TRAIL pathway to eradicate tumor cells.