Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-08545-2

Links

Tools

Export citation

Search in Google Scholar

Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting

Journal article published in 2017 by Yunfeng Cao, Shunlin Liang, Xiaona Chen ORCID, Tao He ORCID, Dongdong Wang, Xiao Cheng
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe speeds of both Arctic surface warming and sea-ice shrinking have accelerated over recent decades. However, the causes of this unprecedented phenomenon remain unclear and are subjects of considerable debate. In this study, we report strong observational evidence, for the first time from long-term (1984–2014) spatially complete satellite records, that increased cloudiness and atmospheric water vapor in winter and spring have caused an extraordinary downward longwave radiative flux to the ice surface, which may then amplify the Arctic wintertime ice-surface warming. In addition, we also provide observed evidence that it is quite likely the enhancement of the wintertime greenhouse effect caused by water vapor and cloudiness has advanced the time of onset of ice melting in mid-May through inhibiting sea-ice refreezing in the winter and accelerating the pre-melting process in the spring, and in turn triggered the positive sea-ice albedo feedback process and accelerated the sea ice melting in the summer.