Nature Research, Scientific Reports, 1(7), 2017
DOI: 10.1038/s41598-017-00489-x
Full text: Download
AbstractAccounting for about 1.5 million deaths annually, lung cancer is the prevailing cause of cancer deaths worldwide, mostly associated with long-term smoking effects. Numerous small-animal studies are performed currently in order to better understand the pathogenesis of the disease and to develop treatment strategies. Within this letter, we propose to exploit X-ray dark-field imaging as a novel diagnostic tool for the detection of lung cancer on projection radiographs. Here, we demonstrate in living mice bearing lung tumors, that X-ray dark-field radiography provides significantly improved lung tumor detection rates without increasing the number of false-positives, especially in the case of small and superimposed nodules, when compared to conventional absorption-based imaging. While this method still needs to be adapted to larger mammals and finally humans, the technique presented here can already serve as a valuable tool in evaluating novel lung cancer therapies, tested in mice and other small animal models.