Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep34765

Links

Tools

Export citation

Search in Google Scholar

Unravelling the Efficient Photocatalytic Activity of Boron-induced Ti3+ Species in the Surface Layer of TiO2

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTi3+ species are highly unstable in air owing to their facile oxidation into Ti4+ species, and thus they cannot concentrate in the surface layer of TiO2 but are mainly present in its bulk. We report generation of abundant and stable Ti3+ species in the surface layer of TiO2 by boron doping for efficient utilization of solar irradiation. The resultant photocatalysts (denoted as B-TiO2−x) exhibit extremely high and stable solar-driven photocatalytic activity toward hydrogen production. The origin of the solar-light activity enhancement in the B-TiO2−x photocatalysts has been thoroughly investigated by various experimental techniques and density functional theory (DFT) calculations. The unique structure invoked by presence of sufficient interstitial boron atoms can lead to substantial variations in density of states of B-TiO2−x, which not only significantly narrow the band gap of TiO2 to improve its visible-light absorption, but also promote the photogenerated electron mobility to enhance its solar-light photocatalytic activity.