Published in

SAGE Publications, Human and Experimental Toxicology, 6(36), p. 554-564, 2016

DOI: 10.1177/0960327116681652

Links

Tools

Export citation

Search in Google Scholar

Simulating real-life exposures to uncover possible risks to human health: A proposed consensus for a novel methodological approach

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In real life, consumers are exposed to complex mixtures of chemicals via food, water and commercial products consumption. Since risk assessment usually focuses on individual compounds, the current regulatory approach doesn’t assess the overall risk of chemicals present in a mixture. This study will evaluate the cumulative toxicity of mixtures of different classes of pesticides and mixtures of different classes of pesticides together with food additives (FAs) and common consumer product chemicals using realistic doses after long-term exposure. Groups of Sprague Dawley (CD-SD) rats (20 males and 20 females) will be treated with mixtures of pesticides or mixtures of pesticides together with FAs and common consumer product chemicals in 0.0, 0.25 × acceptable daily intake (ADI)/tolerable daily intake (TDI), ADI/TDI and 5 × ADI/TDI doses for 104 weeks. All animals will be examined every day for signs of morbidity and mortality. Clinical chemistry hematological parameters, serum hormone levels, biomarkers of oxidative stress, cardiotoxicity, genotoxicity, urinalysis and echocardiographic tests will be assessed periodically at 6 month intervals. At 3-month intervals, ophthalmological examination, test for sensory reactivity to different types of stimuli, together with assessment of learning abilities and memory performance of the adult and ageing animals will be conducted. After 24 months, animals will be necropsied, and internal organs will be histopathologically examined. If the hypothesis of an increased risk or a new hazard not currently identified from cumulative exposure to multiple chemicals was observed, this will provide further information to public authorities and research communities supporting the need of replacing current single-compound risk assessment by a more robust cumulative risk assessment paradigm.