Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Holocene, 2(27), p. 292-308, 2016

DOI: 10.1177/0959683616658530

Links

Tools

Export citation

Search in Google Scholar

The ‘Little Ice Age’ in the Himalaya: A review of glacier advance driven by Northern Hemisphere temperature change

Journal article published in 2016 by Ann V. Rowan ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Northern Hemisphere cooling between 1400 and 1900 in the Common Era (CE) resulted in the expansion of glaciers during a period known as the ‘Little Ice Age’ (LIA). Early investigation of recent advances of Himalayan glaciers assumed that these events were synchronous with LIA advances identified in Europe, based on the appearance and position of moraines and without numerical age control. However, applications of Quaternary dating techniques such as terrestrial cosmogenic nuclide dating have allowed researchers to determine numerical ages for these young moraines and clarify when glacial maxima occurred. This paper reviews geochronological evidence for the last advance of glaciers in the Himalaya. The 66 ages younger than 2000 years (0–2000 CE) calculated from 138 samples collected from glacial landforms demonstrate that peak moraine building occurred between 1300 and 1600 CE, slightly earlier than the coldest period of Northern Hemisphere air temperatures. The timing of LIA advances varied spatially, likely influenced by variations in topography and meteorology across and along the mountain range. Palaeoclimate proxies indicate cooling air temperatures from 1300 CE leading to a southward shift in the Asian monsoon, increased Westerly winter precipitation and generally wetter conditions across the range around 1400 and 1800 CE. The last advance of glaciers in the Himalaya during a period of variable climate resulted from cold Northern Hemisphere air temperatures and was sustained by increased snowfall as atmospheric circulation reorganised in response to cooling during the LIA.