Published in

American Physiological Society, AJP - Endocrinology and Metabolism, 1(274), p. E57-E64

DOI: 10.1152/ajpendo.1998.274.1.e57

Links

Tools

Export citation

Search in Google Scholar

Effects of acute α2-blockade on insulin action and secretion in humans

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We tested whether acute α2-blockade affects insulin secretion, glucose and fat metabolism, thermogenesis, and hemodynamics in humans. During a 5-h epinephrine infusion (50 ng ⋅ min−1 ⋅ kg−1) in five volunteers, deriglidole, a selective α2-receptor inhibitor, led to a more sustained rise in plasma insulin and C-peptide levels (+59 ± 14 vs. +28 ± 6, and +273 ± 18 vs. +53 ± 14 pM, P < 0.01 vs. placebo) despite a smaller rise in plasma glucose (+0.90 ± 0.4 vs. +1.5 ± 0.3 mM, P < 0.01). Another 10 subjects were studied in the postabsorptive state and during a 4-h hyperglycemic (+4 mM) clamp, coupled with the ingestion of 75 g of glucose at 2 h. In the postabsorptive state, hepatic glucose production, resting energy expenditure, and plasma insulin, free fatty acid (FFA), and potassium concentrations were not affected by acute α2-blockade. Hyperglycemia elicited a biphasic rise in plasma insulin (to a peak of 140 ± 24 pM), C-peptide levels (1,520 ± 344 pM), and insulin secretion (to 410 ± 22 pmol/min); superimposed glucose ingestion elicited a further twofold rise in insulin and C-peptide levels, and insulin secretion. However, α2-blockade failed to change these secretory responses. Fasting blood β-hydroxybutyrate and glycerol and plasma FFA and potassium concentrations all declined with hyperglycemia; time course and extent of these changes were not affected by α2-blockade. Resting energy expenditure (+25 vs. +16%, P < 0.01) and external cardiac work (+28% vs. +19%, P < 0.01) showed larger increments after α2-blockade. We conclude that acute α2-blockade in humans 1) prevents epinephrine-induced inhibition of insulin secretion, 2) does not potentiate basal or intravenous- or oral glucose-induced insulin release, 3) enhances thermogenesis, and 4) increases cardiac work.