Published in

Trans Tech Publications, Materials Science Forum, (874), p. 497-502

DOI: 10.4028/www.scientific.net/msf.874.497

Links

Tools

Export citation

Search in Google Scholar

Surface Roughness and Topography Analysis in Precision Milling of 3J33 Maraging Steel

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In precision milling, the quality of surface finish is an important requirement for workpiece machined. Thus, optimization of cutting parameters is important for controlling the surface quality. In this study, the Taguchi method is used to find the effects of milling parameters on surface roughness in precision milling of 3J33 maraging steel. A model, which is based on the milling parameters and tool geometry, is also proposed in order to predict the surface topography. The experimental results show that milling speed has significant effect on the surface roughness among the milling parameters. Besides, tool geometry and material deformation play important roles in the surface topography.