Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep24246

Links

Tools

Export citation

Search in Google Scholar

Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition

Journal article published in 2016 by Ilias Efthimiopoulos ORCID, Cienna Buchan, Yuejian Wang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh-pressure Raman spectroscopy and x-ray diffraction of Sb2S3 up to 53 GPa reveals two phase transitions at 5 GPa and 15 GPa. The first transition is evidenced by noticeable compressibility changes in distinct Raman-active modes, in the lattice parameter axial ratios, the unit cell volume, as well as in specific interatomic bond lengths and bond angles. By taking into account relevant results from the literature, we assign these effects to a second-order isostructural transition arising from an electronic topological transition in Sb2S3 near 5 GPa. Close comparison between Sb2S3 and Sb2Se3 up to 10 GPa reveals a slightly diverse structural behavior for these two compounds after the isostructural transition pressure. This structural diversity appears to account for the different pressure-induced electronic behavior of Sb2S3 and Sb2Se3 up to 10 GPa, i.e. the absence of an insulator-metal transition in Sb2S3 up to that pressure. Finally, the second high-pressure modification appearing above 15 GPa appears to trigger a structural disorder at ~20 GPa; full decompression from 53 GPa leads to the recovery of an amorphous state.