Published in

The Electrochemical Society, ECS Transactions, 25(72), p. 31-40, 2016

DOI: 10.1149/07225.0031ecst

Links

Tools

Export citation

Search in Google Scholar

Nickel-Rare Earth (RE = Ce, Sm, Dy) Electrodes for H2O2 Reduction in Fuel Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of hydrogen peroxide (H2O2) as an oxidant is considered a good alternative to oxygen for the cathodic process in liquid fuel cells. Herein, we studied the reduction of H2O2 at nickel and at nickel-rare earth (RE = Ce, Sm, Dy) alloys containing 5 and 10 at.% of RE metal. The alloys were prepared by arc melting, starting from the stoichiometric amounts of the two parent metals, and analyzed by X-ray diffraction and scanning electron microscopy coupled with energy-dispersive spectroscopy. The electrochemical characterization was carried out by voltammetry and chronoamperometry measurements in alkaline media. Ni0.95Ce0.05 alloy exhibited the highest catalytic activity for H2O2 reduction reaction, with a number of exchanged electrons of 1.7. Additionally, activation energies were estimated according to Arrhenius equation.